
Outlier Detection with Dirichlet Process Mixtures

Matthew S. Shotwell1 Elizabeth H. Slate2

Vanderbilt University1

Medical University of South Carolina2

August 3, 2011



Dirichlet Process Mixture (DPM)

yi|θi ∼ L(θi; yi) i = 1 .. n
θi ∼ G
G ∼ DP (α,G0)

I DP is a distribution over distributions

I G is discrete ⇒ P (θj = θk) > 0

I if θj = θk, then yj and yk are clustered



Product Partition Model (PPM)

yi|zi = k, φk ∼ L(φk; yi) i = 1 .. n
φk ∼ G0(φk) k = 1 .. r

P (z) ∝
r∏

k=1

αΓ(nk)

I z is the data partition parameter

I estimating z ‘partitions’, or ‘clusters’ the data

I if zj = zk, then yj and yk are clustered

I [Hartigan, 1990]



Outlier Detection Using Partitioning
Steps:

1. set a “small” cluster threshold (e.g. 1% of n)
2. estimate the data partition (i.e. cluster the data)
3. “small” clusters are considered outlying

I an outlier partition contains one or more small outlier clusters
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Quantifying Evidence to Detect Outliers: Questions

If the data partition (z) is estimated, and outlier clusters
are discovered, how much evidence suggests that these
clusters are truely different from the others?

Can the partition estimate be restricted such that a
minimum level of evidence is required to identify outlier
clusters? Yes!



A Criterion for Outlier Detection: Setup

Consider an outlier partition zo (n = 10):

zo = [1, 1, 1, 1, 1, 1, 1, 1, 2, 3]

zm1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 3]

zm2 = [1, 1, 1, 1, 1, 1, 1, 1, 2, 1]

zm3 = [1, 1, 1, 1, 1, 1, 1, 1, 2, 2]

zm4 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

I zm· are formed by merging the outliers in zo.

I outlier detection is a decision between zo and zm·.

I denote the collection zm· as Mo



A Criterion for Outlier Detection: The Trick

zo is favored if, for all zm ∈Mo

P (zo|y) > P (zm|y)

P (y|zo)
P (y|zm)

>
P (zm)

P (zo)

BFom >
P (zm)

P (zo)

BFom >
1

αν
βom

I ν is the number of clusters merged to arrive at zm

I βom (a ratio involving Γ(·)) is always ≥ 1 for zm ∈Mo

I to favor zo, BFom must exceed 1
αν

I BFom must increase 1/α fold for each outlier



A Criterion for Outlier Detection: How to Fix α

I set the criteria by fixing α

I use Jeffrey’s scale of evidence for Bayes factors

I [Efron and Gous, 2001]

Evidence for zo
1/α < 1 negative

1 ≤ 1/α < 3 barely worth a mention
3 ≤ 1/α < 20 positive

20 ≤ 1/α < 150 strong
150 ≤ 1/α very strong



A Criterion for Outlier Detection: Nice Properties

MAP partition estimates automatically satisfy the
criterion for fixed α. Hence, no special or novel
computational methods are required.

Because the DPM accommodates any data likelihood,
outlier detection with Dirichlet process mixtures is
possible with any statistical model that specifies a
likelihood function.



Microarray Time Series in Cell Cycle Synchronized Yeast
I [Spellman et al., 1998]
I 66 minute period, 2 cycles
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Microarray Time Series in Cell Cycle Synchronized Yeast

α = 1
150
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MAP Estimation for z

I Agglomeration [Ward, 1963]

I Polya Urn Gibbs Sampler [MacEachern, 1994]

I Split-Merge Sampler [Jain and Neal, 2004]

I SUGS [Wang and Dunson, 2010]

I sampling is overkill for MAP estimation
I we proposed a stochastic algorithm:

I consists of ‘Explode’ and ‘Merge’ steps
I consistent for the MAP estimate
I avoids complexity of sampling
I facilitates parallel search of partition space

I R package profdpm



Outlier Detection with Finite Mixtures

I [Fraley and Raftery, 2002]

I select z that maximizes the BIC

I requires BFom > n
ρ
2
ν

I i.e. BFom must increase n
ρ
2 fold for each outlier

I DPM outlier detection is generally more conservative.
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