R Connection Internals

Matthew S. Shotwell

Copyright © 2010 Matthew S. Shotwell. The text from this document may be copied,
corrected or updated, and redistributed provided the author is listed among the authors of
derivative publications. This permission only applies to text. Code snippets are separately
licensed according to the General Public License, version 2.

Table of Contents

1 Introduction..................., 1
2 General Strategy................... L. 2
3 Specifics.......... ... 3
3.1 CompPOnEnts . ..ottt 3
3.2 Important Symbols....... ..o . i 3
3.3 Life Cycle. ..o 3
3.3.1 Initialization i 4

3.3.2 Finalizationooiiiiiiii i 5

B SINKS Lo 5
3.5 Character Encoding.......... ..o, 6
3.6 Application Programming Interface............... 6

4 Reference.......... ... i 8
4.1 R EFunctions...... ..o 8
4.2 O StrUCHUTES « o oot e 8

Chapter 1: Introduction 1

1 Introduction

The information in this document was collected through investigation of the R source code,
mostly in the files src/include/Rconnections.h, src/main/connections. c, the files that
reference the functions and symbols therein, and the Subversion commit log over the past
ten years. The concepts presented in this document are current to R version 2.12.0 (R-devel,
r52500). These notes are collected and released purely to satisfy the interests of the author,
and hopefully other R enthusiasts.

The content of this document assumes familiarity with the C and R programming lan-
guages, and some familiarity with the infomation contained in the R Internals manual.
Readers are encouraged to follow along with the R source code in the appropriate sections,
which may be obtained from one of the CRAN mirrors.

For the past ten years, the R connections internals have been fairly stable. Most changes
to the internals have related to the addition of new connection types, most recently the clip-
board connection types, and changes to the character re-encoding mechanism. Currently,
and over the past ten years, the primary contributor (committer) to the connections inter-
nals is Professor Brian Ripley of the University of Oxford, though several other members
of the R core development team have also contributed.

http://cran.r-project.org/doc/manuals/R-ints.html
http://cran.r-project.org/mirrors.html

Chapter 2: General Strategy 2

2 General Strategy

The R connection internals are conceptually similar to the Linux device driver API. Linux
device drivers register C functions with the Linux kernel to be called when user programs
request to read, write, map memory, or otherwise alter a device that the driver controls.
Writing the code for a Linux device driver involves creating a kernel module, a concept
similar to R’s package mechanism.

In a fashion similar to Linux device drivers, R connections register C functions to be
called when the R user requests to create, read, write, or modify a connection. Each type of
R connection performs a specialized task, yet has a common interface with the R program.
This ensures that generic functions like readChar and seek work on all types of connections.

Every R connection is associated with a structure that contains all the symbols necessary
to identify the connection, perform I/O operations, character re-encoding, finalization, and
storage of connection-specific data. R level functions, such as open, close, readChar, and
writeChar ultimately call C functions that access the symbols in this structure to perform
their task.

Chapter 3: Specifics 3

3 Specifics

3.1 Components

The organizational unit of all connections is the struct Rconn C structure, which holds
references to the components that make up a connection. Each type of R connection con-
sists of a standardized set of input/output methods (C functions),a private structure for
connection-specific use, a function to initialize the struct Rconn (conventionally named
newconnection), and a function to interface with R-level code (conventionally named do_
connection). The connection-specific input/output methods perform open, close, read,
write, and several other operations on the connection. The struct Rconn structure ad-
ditionally holds some symbols that are used by the character re-encoding and finalization
mechanisms. Readers will find a complete listing and boilerplate descriptions of the stan-
dard input/output routines and other symbols referenced by the struct Rconn structure
in the section on C structures (see Section 4.2 [C Structures|, page 8).

3.2 Important Symbols

A pointer (Rconnection) to a struct Rconn structure for each connection is stored
in a static declared, statically allocated array in src/main/connections.c named
Connections. The size of the array is set at compile time by the NCONNECTIONS macro,
limiting the maximum number of connections in a single R session (currently 128).
However, all struct Rconn structures, and several other arrays used by connections
are dynamically allocated when a connection is created. The first three connections
referenced in the Connections array are reserved for the special ‘terminal’ connections
with descriptions ‘stdin’, ‘stdout’, and ‘stderr’. These connections may not be modified.

Several functions are available to operate on the Connections array, including

int NextConnection(void)
returns the next free pointer in the Connections array

int ConnIndex(Rconnection)
returns the index of Rconnection in the Connections array

Rconnection getConnection(int)
returns the Rconnection pointer at the int position of the Connections array

Rconnection getConnection_no_err(int)
same as getConnection(int) but will return NULL rather than call generate
an error.

void InitConnections(void)
initializes ‘stdin’, ‘stdout’, and ‘stderr’ connections

3.3 Life Cycle

R functions that create the various connection types may accept different arguments and
have slightly different initialization steps. However, the life cycle of an R connection is fairly
consistent across connections types. Many R functions operate on connections in one stage
or another (usually in the Initialization stage, or between Initialization and Finalization)

Chapter 3: Specifics 4

see Section 4.1 [R Functions], page 8 for a partial listing. Many of these functions ultimately
result in a call to one of the I/O methods set in a struct Rconn. In this manner, data is
passed to and from the connection and the R program, possibly undergoing some useful
transformation, such as text re-encoding. Without loss of generality, the following discussion
considers the life cycle of a file connection.

3.3.1 Initialization

When a user calls the R function file, the .Internal calling convention passes the argu-
ments description, open, blocking, encoding, and raw to the C function do_url, defined
in src/main/connections.c (see the “file” entry in src/main/names.c for verification).
Briefly, these arguments represent the URL, read/write mode, whether the read/write op-
erations are blocking, the character encoding of text to be read from or written to the
connection, and whether the connection should be a ‘raw’ connection. Other R functions
that create connections typically result in a call to other C functions with the naming
convention of the form do_connection.

The do_url function first checks the arguments for validity, for example, that
description is an object of type STRSXP, and not empty. The character encoding of
description is checked and converted, if necessary to the current locale encoding. In
addition, the NextConnection function is used to get the index of the next available
Rconnection in the Connections array, raising an error if none are available. Additional
tests are performed to determine the file given by description is a regular system file,
an internet URL specifying the transfer protocol (i.e. http:// or ftp://), or one of the
supported compressed file types, such as a gzip compressed file.

Assuming the file is a regular (uncompressed) file, data from the do_url arguments
are then extracted to their C equivalents (i.e. const char *) and passed to the newfile
function, which dynamically allocates and initializes an instance of struct Rconn. The
return value is an Rconnection pointer to the newly allocated connection. The newfile
function is specific to regular file connections, and tailors the struct Rconn as such. Other
connection types have functions that perform similar tasks, following the naming convention
newconnection.

The newfile function dynamically allocates an instance of struct Rconn, next passing
it to the function init_con to be generically initialized. Code in the newfile function then
assigns file connection input/output methods to the function pointer members of struct
Rconn. Finally, the private member is set to point to a dynamically allocated instance
of struct fileconn, which holds a FILE stream pointer and other members used by the
file connection methods. A pointer to the new struct Rconn, and program control is then
returned to do_url.

On return to do_url, a pointer to the newly allocated struct Rconn is copied to the
Connections array, in the position returned by NextConnection. Other members of the
struct Rconn structure are also modified at this point, including the blocking indicator
and character encoding name encname.

It is convention that R connections are not immediately opened unless a valid open
argument is provided to the R-level function that creates a connection. In the case one is
provided to do_url, the connection is opended using the open function pointer set by the
newfile functionin the newly created struct Rconn.

Chapter 3: Specifics 5

The final steps of the do_url function registers finalization code to deallocate memory
associated with the connection via the external pointer mechanism (see Section 3.3.2 [Final-
ization], page 5), and build a return value. The return value is an INTSXP with ‘conn_id’
attribute set to the external pointer, the class attribute c("file", "connection"), and
value equal to the index of the Rconnection pointer to the newly created struct Rconn in
the Connections array. This index is used by subsequent R function calls to identify to
the new connection. Special care has been taken here to avoid exposing references to the
connection structures to R code.

3.3.2 Finalization

A finalization function conFinalizer is registered via the external pointer mechanism when
the connection is created. This function is executed when a garbage collection event finds
that the connection is no longer reachable from the running R program. For more infor-
mation on the finalization and external pointer mechanism, see the Writing R Extensions
manual. The function conFinalizer calls con_destroy, which calls con_closel. The
con_closel function calls the close and destroy methods specified in the struct Rconn
structure associated with the connection, if necessary, and deallocates memory associated
with character re-encoding and the description and class character strings. Finally, on
return to con_destroy, memory associated with the struct Rconn structure is released.

The function con_destroy may also be called if the open method of an initialized con-
nection fails, and is always called following a call to the R function close on non-standard,
non-sink connections.

3.4 Sinks

R has a sink mechanism to divert output and messages (messages, warnings, and errors)
to connections. By default, output is diverted to the stdout connection and messages are
diverted to the stderr connection. The R sink function is used to modify or add output
sink connections, and to modify (but not add to) the message connection. Adding or chang-
ing sink connections only affect the output generated by the C functions do_writelines
(src/main/connections.c), Rvprintf, and REvprintf (src/main/printutils.c).

Internally, sink connections are managed through a collection of static declared vari-
ables and functions defined in the file src/main/connections.c. Several statically allo-
cated arrays are delared in order to manage the stack of output sink connections, including
SinkCons, SinkConsClose, and R_SinkSplit, each of length NSINKS (a macro currently
defined to 21). Two additional integer variables, R_SinkNumber and R_OutputCon store the
number of sinks in the output stack, and the number of the output connection at the top
of the stack, respectively. Initially, R_SinkNumber is set to zero and R_OutputCon is set to
one. The SinkCons array holds the number (index in the Connections array) of each sink
connection. The first index of the SinkCons array is reserved for the stdout connection,
and this may not be modified. The SinkConsClose array holds an integer value for each
sink connection, that determines the action performed when the connection is popped from
the sink stack. If a value in SinkConsClose is one or two, the corresponding connection
is closed or destroyed, respectively. If the value is zero, no action is performed. The R_
SinkSplit array holds the value one for each sink connection where output should also be
diverted to the next sink connection on the stack. In this manner, it is possible to divert
output to many connections simultaneously.

http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html

Chapter 3: Specifics 6

When a connection is added to the sink stack via the sink function, in turn calling the
C-level do_sink function, the associated connection number is assigned to R_OutputCon
and appended to the SinkCons array, R_SinkNumber is incremented, and the corresponding
members of the SinkConsClose and R_SinkSplit arrays are assigned according to the
arguments of the sink function call.

While a connection is in the sink stack, its external pointer is preserved with
R_PreserveObject, and released with R_ReleaseObject once the connection is popped
from the sink stack. Hence, while a connection is part of the sink stack, it will not
be destroyed, even if it becomes unreachable at the R level. In addition when a sink
connection is removed from the stack, the action specified by the corresponding member
of SinkConsClose is performed, R_SinkNumber is decremented, and R_OutputCon is
reassigned to the next value in the SinkCons array.

The connection that recieves R messages is identified by the integer stored in the R_
ErrorCon variable, initially set to two, the number of the stderr connection. This variable
may be set and reset using the sink function, such that R messages are diverted to other
connections. When messages are diverted to a connection, the connection external pointer
is preserved using R_PreserveObject. Until recently, the external pointer for a message
sink connections were never released. This was problem was fixed by BUG 14331 such that
external pointers for message sink connections are released the message sink is reset.

3.5 Character Encoding

The R API for chacter re-encoding is covered in the Writing R Extensions manual. However,
several connection types (i.e. file, fifo, pipe, gzfile, bzfile, xzfile, and clipboard)
have a special mechanism for interacting with the character re-encoding subsystem. These
connection types set the fgetc method in the struct Rconn structure to a “dummy” func-
tion named dummy_fgetc. The purpose of this function is to buffer, re-encode, and return
characters read using the fgetc_internal method. Hence, the fgetc_internal method
performs the connection-specific work, returning a single byte (char) read from the connec-
tion. Several connections that support character re-encoding additionally set the vsprintf
member of struct Rconn to dummy_vsprintf. This function simultaneously performs the
function typically associated with vsprintf (variable argument conversion and printing ac-
cording to a format string), as well as character re-encoding. This “dummy” mechanism is
generic, as evidenced by its use in a variety of connection types, and provides one of the
most powerful connection features.

3.6 Application Programming Interface

The R connections internals are generally not available to package developers. The
C symbols associated with the connections internals are protected by declarations
and definitions in private headers, static declarations, and by setting the visibility
attribute attribute_hidden, where available. However, several of the functions defined
in src/main/connections.c are called in other places throughout the source code. In
addition, comments in the source code hint at a possible public API in future versions of
R. The following code exerpt from src/main/connections.c (added at revision r19005,
03/29/2002, by Luke Tierney of The University of Iowa) illustrates both points.

/* This function allows C code to call the write method of a

http://cran.r-project.org/manuals.html

Chapter 3: Specifics 7

connection. It is mainly intended as a means for C code to do a
buffered write to sockets, but could be the start of a more
extensive C-level connection API. LT %/

size_t R_WriteConnection(Rconnection con, void *buf, size_t n)

{
if (!con->isopen) error(_("connection is not open"));
if (!con->canwrite) error(_("cannot write to this connection"));
return con->write(buf, 1, n, con);

}

The R_WriteConnection function is declared and used only in src/main/serialize.c.
The R serialization mechanism (save/load) is also the sole user of the two
publicly (Rinternals.h) declared functions loosely associated with connections:
R_InitConnOutPStream, and R_InitConnInPStream. However, each of these three
functions requires an initialized Rconnection pointer.

The following snippet from src/include/Rinternals.h defines an opaque pointer to
the struct Rconn structure.

/* The connection interface is not yet available to packages. To
allow limited use of connection pointers this defines the opaque
pointer type. */
#ifndef HAVE_RCONNECTION_TYPEDEF
typedef struct Rconn *Rconnection;
#define HAVE_RCONNECTION_TYPEDEF
#endif
However, in the absence of a public definition for struct Rconn, or another mechanism to
obtain a reference to an initialized structure, the existing API functions are not usable by

authors of extension packages.

A more complete connections API was proposed by Jeff Horner of Vanderbilt University
in an series of R-devel messages (see "[Rd] Connections patch", 11/2/06). The proposed
API was essentially a series of functions to compliment the R_WriteConnection function,
including methods to read, open, close, and create new connections. However, these addi-
tions have not been adopted by the R core development team.

Chapter 4: Reference 8

4 Reference

4.1 R Functions

The following (possibly not comprehensive) list contains R functions from the recommended
R packages that are either directly or indirectly related to connections: bzfile,
cat, clearPushBack, close, dget, dput, dump, fifo, flush, getAllConnections,
getConnection, gzcon, gzfile, isatty, isIncomplete, isOpen, isSeekable, load,
memCompress, memDecompress, open, parse, pipe, pushBack, pushBackLength,
rawConnection, rawConnectionValue, readBin, readChar, read.csv, read.csv2,
read.delim, read.delim2, readlLines, read.table, save, scan, seek, sink,
sink.number, socketConnection, sockSelect, source, stderr, stdin, stdout,
summary.connection, textConnection, textConnectionValue, truncate, unz, unzip,
url, write, writeBin, writeChar, writelLines, xzfile.

4.2 C Structures

Below are the definitions for struct Rconn and struct fileconn copied from
src/include/Rconnections.h. Additional comments by this author are inserted between
special delimiters of the form /** comment **/.

struct Rconn {
/** class name (null terminated) *x*/
char* class;

/** description (null terminated), can be a filename, url, or other
identifier, depending on the connection type

*% /

char* description;

int enc; /* the encoding of ’description’ */

/** file operation mode (null terminated) *x/
char mode[5];

/** text - true if connection operates on text
isopen - true if connection is open
incomplete - used in @code{do_readLines}, @code{do_isincompletel},
and text_vfprintf, From ‘?7connections‘: true if last
read was blocked, or for an output text connection whether
there is unflushed output

canread - true if connection is readable

canwrite - true if connection is writable

canseek - true if connection is seekable

blocking - true if connection reads are blocking

isGzcon - true if connection operates on gzip compressed data

*x /
Rboolean text, isopen, incomplete, canread, canwrite, canseek, blocking,
isGzcon;

/** function pointers for I/0 operations **/
/** open - called when the connection should be opened
args: struct Rconn * - an initialized connection to be opened
return: Rboolean - true if connection successfully opened, false otherwise
*%/
Rboolean (*open) (struct Rconn *);

Chapter 4: Reference

/** close - called when the connection should be closed
args: struct Rconn * - a connection to be closed
*% /
void (*close) (struct Rconn *); /* routine closing after auto open */
/** destroy - called after the connection is closed in order to free memory,
and other cleanup tasks
args: struct Rconn * - a connection to be closed
*% /
void (*destroy) (struct Rconn *); /* when closing connection */
/** viprintf - variable argument list version of printf for a connection
args: struct Rconn * - a connection where items should be printed
const char * - a format string in the style of the printf family
va_list - a variable argument list containing the items
referred to in the format string
return: int - number of characters printed, negative on failure
*%/
int (xvfprintf) (struct Rconn *, const char *, va_list);
/*x fgetc - get a (re-encoded) character from the connection
args: struct Rconn * - a connection to be read
return: int - a (re-encoded) character, or R_EOF
*% /
int (xfgetc) (struct Rconn *);
/*x fgetc_internal - get a character from the connection
args: struct Rconn * - a connection to be read
return: int - a character, or R_EOF
*x/
int (xfgetc_internal) (struct Rconn *);
/** seek - seek to a new position in the connection
args: struct Rconn * - a connection to seek
double - offset to seek relative to origin, apparently
double is used here to avoid using
integer types, i.e. long int, which is
the prototype of the corresponding parameter
in fseek, as defined in stdio.h
int - the origin of seeking, 1 (and any except 2 and
3) if relative to the beginning of the
connection, 2 if relative to the current
connection read/write position, 3 if relative to
the end of the connection
int - currently only used by file_seek to select
the read or write position when the offset is NA
return: double - the read/write position of the connection before
seeking, negative on error double is again used to
avoid integer types
*%/
double (*seek) (struct Rconn *, double, int, int);
/** truncate - truncate the connection at the current read/write position.
args: struct Rconn * - a connection to be truncated
*% /
void (*truncate) (struct Rconn *);
/*x fflush - called when the connection should flush internal read/write buffers
args: struct Rconn * - a connection to be flushed
return: int - zero on success, non-zero otherwise
*k /
int (xfflush) (struct Rconn *);
/** read - read in the style of fread
args: void * - buffer where data is read into
size_t - size (in bytes) of each item to be read

Chapter 4: Reference

size_t - number of items to be read
struct Rconn * - a connection to be read
return: size_t - number of _items_ read
*x/
size_t (*read) (void *, size_t, size_t, struct Rconn *);
/**% write - write in the style of furite

args: void * - buffer containing data to be written
size_t - size (in bytes) of each item to be written
size_t - number of items to be written

struct Rconn * - a connection to be written
return: size_t - number of _items_ written
*x /
size_t (*write) (const void *, size_t, size_t, struct Rconn *);

/** cached and pushBack data

nPushBack - number of lines of cached/pushBack storage
posPushBack - read position on current line of storage
PushBack - cached/pushBack data lines (’\n’ delimited)
save - used to store the character following a \n, if not \r
save2 - used to store a character from Rconn_ungetc

*%/

int nPushBack, posPushBack; /* number of lines, position on top line */
char **PushBack;
int save, save2;

/** character re-encoding with iconv

encname - character encoding string (null terminated), this string

must be one of the standard encoding strings used by [lib]iconv
inconv - input character encoding context (iconv_t)
outconv - output character encoding context (iconv_t)

iconvbuff - input character encoding buffer
oconvbuff - output character encoding buffer

next - only used by dummy_fgetc, points to the next re-encoded
character for reading
init_out - storage for output iconv initialization sequence
navail - iconv buffer offset
inavail - iconv buffer offset
EOF_signalled - true if EOF reached
UTF8out - true if connection writes UTF8 encoded characters
*%/

char encname[101];

/* will be iconv_t, which is a pointer. NULL if not in use */
void *inconv, *outconv;

/* The idea here is that no MBCS char will ever not fit */
char iconvbuff[25], oconvbuff[50], *next, init_out[25];

short navail, inavail;

Rboolean EOF_signalled;

Rboolean UTF8out;

/*x finalization pointers

id - unique id, used to "ensure that the finalizer does not
try to close connection after it is alread closed"
(quoted from source code), but also to identify the
connection to be finalized. Using an arbitrary but
unique id here is clever, it means the connections
internals are further protected from passing references
to connection structures.

ex_ptr - external pointer, referenced by finalizer code

10

Chapter 4: Reference

*k /
void *id;
void *ex_ptr;

/** private user data (i.e. FILE *, offsets etc.) *x/
void *private;
};
typedef struct fileconn {
/** stream pointer for file connection *x*/
FILE *fp;

/** read/write offsets **/
#if defined (HAVE_OFF_T) && defined (HAVE_FSEEKO)
off_t rpos, wpos;
#else
#ifdef Win32
off64_t rpos, wpos;
#else
long rpos, wpos;
#endif
#endif

/** last_was_write - true if last file operation was write *x*/
Rboolean last_was_write;

/** raw - true if a raw file connection **/
Rboolean raw;

#ifdef Win32
/** anon_file - true if file is temporary or ’anonymous’ *x/
Rboolean anon_file;

/** name - expanded filename of temporary file *x/
char name [PATH_MAX+1];

#endif

} *Rfileconn;

11

Index

Index

Structures

C

Connections.ot

R

R_ETrorCon. . oitii i
R_OQutputCon...........,
R_SinkNumber i,

Functions

C

closemethod....... i,
con_closel
CON_deSTIOY. ...ttt
conFinalizerot
ConnIndeX .. oviii e

D

destroymethod
Ao _SInK .. e

getConnection
getConnection_no_err.........................

I

InitConnections.........covuiiniininennennnn...

N

newfile

12
R_SinkSplit....... ... 5
SAnKCOMS . ottt 5
SinkConsClosSe . ..o ittt 5
struct fileconn.............oviiiiiiniiinn... 11
struct Rconn............ 3,8
NextConnectionoouiiiiniininnennenn 3
openmethod.......... il 8
R_InitConnInPStream..............covvvunnn... 7
R_InitConnOutPStream......................... 7
R_PreserveObject.............................. 6
R_ReleaseObjectcooiiiiiiiiiiiinn.. 6
R_WriteConnectionc.uviuinin.n. 6,7
readmethod.......... ..o, 9
REvprintf...................... ..ol 5
Rvprintfo 5
seekmethod........ i 9
SAN K. 5
truncatemethod 9
viprintf methodl 9
writemethod............ ... oo, 10

	Introduction
	General Strategy
	Specifics
	Components
	Important Symbols
	Life Cycle
	Initialization
	Finalization

	Sinks
	Character Encoding
	Application Programming Interface

	Reference
	R Functions
	C Structures

	Index

